An invasive podosome-like structure promotes fusion pore formation during myoblast fusion
نویسندگان
چکیده
Recent studies in Drosophila have implicated actin cytoskeletal remodeling in myoblast fusion, but the cellular mechanisms underlying this process remain poorly understood. Here we show that actin polymerization occurs in an asymmetric and cell type-specific manner between a muscle founder cell and a fusion-competent myoblast (FCM). In the FCM, a dense F-actin-enriched focus forms at the site of fusion, whereas a thin sheath of F-actin is induced along the apposing founder cell membrane. The FCM-specific actin focus invades the apposing founder cell with multiple finger-like protrusions, leading to the formation of a single-channel macro fusion pore between the two muscle cells. Two actin nucleation-promoting factors of the Arp2/3 complex, WASP and Scar, are required for the formation of the F-actin foci, whereas WASP but not Scar promotes efficient foci invasion. Our studies uncover a novel invasive podosome-like structure (PLS) in a developing tissue and reveal a previously unrecognized function of PLSs in facilitating cell membrane juxtaposition and fusion.
منابع مشابه
Group I PAKs function downstream of Rac to promote podosome invasion during myoblast fusion in vivo
The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell-cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion i...
متن کاملThe Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation
The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusi...
متن کاملCompetition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo.
Dynamic rearrangements of the actin cytoskeleton play a key role in numerous cellular processes. In Drosophila, fusion between a muscle founder cell and a fusion competent myoblast (FCM) is mediated by an invasive, F-actin-enriched podosome-like structure (PLS). Here, we show that the dynamics of the PLS is controlled by Blown fuse (Blow), a cytoplasmic protein required for myoblast fusion but ...
متن کاملCell–Cell Fusion: A New Function for Invadosomes
Podosomes are cytoskeletal-based structures involved in extracellular matrix remodeling and cellular motility. A new study now implicates podosomes in pore formation during myoblast fusion.
متن کاملPhospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration
Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 191 شماره
صفحات -
تاریخ انتشار 2010